Gujarat University

K. S. School of Business Management and Information Technology [Five Years' (Full – Time) M.Sc. (CA&IT) Integrated Degree Course]
First Year M.Sc. (CA&IT) (Semester - I)

Course Name: Fundamentals of Computer Architecture and Electronics - Practicals

Course Code: IDC-IMSCIT-114P

Course Credit: 2

Course Outcomes:

- ➤ To instil foundational knowledge of electronics, emphasizing the design and analysis of simple circuits and understanding of digital logic.
- ➤ To introduce students to the intricacies of assembly language programming, shedding light on low-level program representation and its transition from high-level languages.
- ➤ To develop practical skills in circuit construction, logic gate operations, and assembly programming.
- > To ensure students can set up and operate in an assembly programming environment, developing an understanding of control structures and operations at the assembly level

Contents:

Unit No.	Course Content	Hours	Credits
1	Assembly Language Programming	30	1
	Setup and Environment Initialization		
	 Setting up an Assembly Programming Environment using tools like MASM or NASM. 		
	 Writing and executing a simple "Hello World" program in assembly. 		
	Basic Operations		
	 Implement arithmetic and logical operations using assembly instructions. 		
	Manipulate data in registers and memory		
	Control Structures Implementation		
	 Design simple programs demonstrating loops and conditional structures in assembly. 		
	 Develop procedures and function calls for modular code design 		
2	Digital Logic Circuits	30	1
	Building Simple Circuits		
	 Recognize components like resistors, capacitors, diodes, and transistors. 		
	 Construct basic series and parallel circuits using breadboards. 		

Gujarat University

K. S. School of Business Management and Information Technology [Five Years' (Full – Time) M.Sc. (CA&IT) Integrated Degree Course]
First Year M.Sc. (CA&IT) (Semester - I)

- Measure and analyze voltage, current, and resistance using multimeters
- Introduction to Digital Electronics
 - Understand the concept of binary logic: 0s and 1s, high and low voltages.
 - Explore and test the operations of fundamental logic gates: AND, OR, NOT, NAND, NOR, and XOR.
 - Design basic combinational circuits, such as half adders, full adders, and multiplexers, using the provided logic gates

Reference Books:

- Computer System Architecture –
 By M. Morris Mano PHI/Pearson Education
- 2. Digital Computer Fundamentals By Thomas C. Bartee Tata McGraw-Hill

Accomplishments after Completing the Course:

Upon successful completion of the "Fundamental of Computer Organization and Electronics- Practicals" course, students will be able to:

- Be proficient in setting up an assembly language programming environment using popular tools like MASM or NASM.
- Demonstrate competence in writing, assembling, and executing assembly language programs.
- Implement and test arithmetic and logical operations at the assembly level.
- Manipulate data storage in both registers and memory, understanding the nuances of each.
- Design and execute assembly programs with control structures, such as loops and conditionals.
- Have hands-on experience with basic electronic components like resistors, capacitors, diodes, and transistors.
- Possess the ability to construct, test, and troubleshoot simple series and parallel circuits.
- Understand the fundamental concepts of binary logic, representing data in high and low voltage signals.
- Have practical experience with essential digital logic gates like AND, OR, NOT, NAND, NOR, and XOR.
- Design, implement, and test basic digital circuits, including combinational circuits like half adders and full adders.